Hyper-Hamiltonian generalized Petersen graphs

نویسندگان

  • Ta-Cheng Mai
  • Jeng-Jung Wang
  • Lih-Hsing Hsu
چکیده

Assume that n and k are positive integers with n ≥ 2k + 1. A non-hamiltonian graph G is hypo hamiltonian if G − v is hamiltonian for any v ∈ V (G). It is proved that the generalized Petersen graph P (n, k) is hypo hamiltonian if and only if k = 2 and n ≡ 5 (mod 6). Similarly, a hamiltonian graph G is hyper hamiltonian if G−v is hamiltonian for any v ∈ V (G). In this paper, we will give some necessary conditions and some sufficient conditions about the hyper hamiltonian generalized Petersen graphs. In particular, P (n, k) is not hyper hamiltonian if n is even and k is odd. We also prove that P (3k, k) is hyper hamiltonian if and only if k is odd. Moreover, P (n, 3) is hyper hamiltonian if and only if n is odd and P (n, 4) is hyper hamiltonian if and only if n 6= 12. Furthermore, P (n, k) is hyper hamiltonian if k is even with k ≥ 6 and n ≥ 2k + 2 + (4k− 1)(4k + 1), and P (n, k) is hyper hamiltonian if k ≥ 5 is odd and n is odd with n ≥ 6k − 3 + 2k(6k − 2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graceful labelings of the generalized Petersen graphs

A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...

متن کامل

4-ordered-Hamiltonian problems of the generalized Petersen graph GP(n, 4)

AgraphG is k-ordered if for every sequence of k distinct vertices ofG, there exists a cycle inG containing these k vertices in the specified order. It is k-ordered-Hamiltonian if, in addition, the required cycle is a Hamiltonian cycle in G. The question of the existence of an infinite class of 3-regular 4-ordered-Hamiltonian graphs was posed in Ng and Schultz in 1997 [2]. At the time, the only ...

متن کامل

The lower bound for the number of 1-factors in generalized Petersen graphs

‎In this paper‎, ‎we investigate the number of 1-factors of a‎ ‎generalized Petersen graph $P(N,k)$ and get a lower bound for the‎ ‎number of 1-factors of $P(N,k)$ as $k$ is odd‎, ‎which shows that the‎ ‎number of 1-factors of $P(N,k)$ is exponential in this case and‎ ‎confirms a conjecture due to Lovász and Plummer (Ann‎. ‎New York Acad‎. ‎Sci‎. ‎576(2006)‎, ‎no‎. ‎1‎, ‎389-398).

متن کامل

Grinberg's Criterion Applied to Some Non-Planar Graphs

Robertson ([5]) and independently, Bondy ([1]) proved that the generalized Petersen graph P (n, 2) is non-hamiltonian if n ≡ 5 (mod 6), while Thomason [7] proved that it has precisely 3 hamiltonian cycles if n ≡ 3 (mod 6). The hamiltonian cycles in the remaining generalized Petersen graphs were enumerated by Schwenk [6]. In this note we give a short unified proof of these results using Grinberg...

متن کامل

Perfect one-factorizations in generalized Petersen graphs

A perfectly one-factorable (P1F) regular graph G is a graph admitting a partition of the edge-set into one-factors such that the union of any two of them is a Hamiltonian cycle. We consider the case in which G is a cubic graph. The existence of a P1F cubic graph is guaranteed for each admissible value of the number of vertices. We give conditions for determining P1F graphs within a subfamily of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2008